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The Kelvin-Helmholtz rollup of three-dimensional temporally evolving plane 
mixing layers with an initial Reynolds number of 500 based on vorticity thickness 
and half the velocity difference have been simulated numerically. All simulations 
were begun from a few low-wavenumber disturbances, usually derived from linear 
stability theory, in addition to the mean velocity profile. A standard set of ‘clean’ 
structures develops in the majority of the simulations. The spanwise vorticity rolls 
up into a corrugated spanwise roller with vortex stretching creating strong spanwise 
vorticity in a cup-shaped region at the bends of the roller. Predominantly streamwise 
rib vortices develop in the braid region between the rollers. For sufficiently strong 
initial three-dimensional disturbances these ribs ‘ collapse ’ into compact axi- 
symmetric vortices. The rib vortex lines connect to neighbouring ribs and are kinked 
in the direction opposite to that of the roller vortex lines. Because of this, these two 
sets of vortex lines remain distinct. For certain initial conditions, persistent ribs do 
not develop. In  such cases, the development of significant three-dimensionality is 
delayed. 

In addition, simulations of infinitesimal three-dimensional disturbances evolving 
in a two-dimensional mixing layer were performed. Many features of the fully 
nonlinear flows are remarkably well predicted by the linear computations. Such 
computations can thus be used to predict the degree of three-dimensionality in the 
mixing layer even after the onset of nonlinearity. Several nonlinear effects can also 
be identified by comparing linear and nonlinear computations. These include the 
collapse of rib vortices, the formation of cups of spanwise vorticity, and the 
appearance of spanwise vorticity with sign opposite that of the mean vorticity. These 
nonlinear effects have been identified as precursors of the transition to turbulence 
(Moser & Rogers 1991). 

1. Introduction 
The mixing layer that forms between two fluid streams moving with different 

velocities is an important model problem for the study of turbulence in free shear 
layers. It is particularly interesting in the context of scalar mixing and chemical 
reaction since many practical chemically reacting flows are free shear flows. 
However, here we are concerned with the hydrodynamic evolution of an 
incompressible plane mixing layer in the belief that a thorough understanding of the 
hydrodynamics is a prerequisite to the study of scalar mixing in such a flow. 

1.1. Previous observations 
Various experimental studies have shown that the spatially developing mixing layer 
starting at the trailing edge of a splitter plate between two streams is dominated by 



184 M.  M .  Rogers and R.  D .  Moser 

large, predominantly two-dimensional, spanwise vortex structures (rollers) that arise 
from the Kelvin-Helmholtz instability of the layer. These two-dimensional 
structures have been observed even a t  very high Reynolds numbers in fully 
turbulent mixing layers (Brown & Roshko 1971,1974). I n  the experiments of Winant 
& Browand (1974), it was found that the spreading of the mixing layer was due 
primarily to  pairing (co-rotation and merging) of these spanwise vortices. A similar 
vortex amalgamation has been observed at much higher Reynolds numbers (Brown 
& Roshko 1974). This rollup and pairing of the mixing layer has also been studied 
extensively using two-dimensional numerical simulations (e.g. Acton 1976 ; Patnaik, 
Sherman & Corcos 1976; Riley & Metcalfe 1980; Corcos & Sherman 1984; Jacobs & 
Pullin 1989). 

However, the experiments of Chandrsuda et al. (1978) suggest that in highly 
turbulent mixing layers, the two-dimensional rollup and pairing may not occur. I n  
agreement with this observation, i t  was apparently necessary to add two-dimensional 
disturbances to  random three-dimensional initial conditions to trigger coherent 
rollups in several numerical simulations (Mansour, Ferziger & Reynolds 1978 ; Riley 
& Metcalfe 1980; Metcalfe et al. 1987). Also, dislocations in an otherwise two- 
dimensional array of spanwise rollers (Browand & Troutt 1980, 1985) and highly 
three-dimensional roller vortices (Nygaard & Glezer 1990) have been observed. 

There is abundant experimental evidence that predominantly streamwise vortices 
(rib vortices following Hussain 1983) reside in the braid region between the Kelvin- 
Helmholtz rollers (Brown & Roshko 1974; Konrad 1976; Breidenthal 1981 ; Bernal & 
Roshko 1986). These rib vortices have also been observed in numerical 
simulations (Mansour et al. 1978; Riley & Metcalfe 1980; Cain, Reynolds & Ferziger 
1981 ; Metcalfe et al. 1987 ; Ashurst & Meiberg 1988), where they are seen to  arise from 
random three-dimensional initial conditions as well as from initial conditions 
designed to produce them. In experiments, the spanwise location of these streamwise 
vortices has been found to correlate with upstream disturbances in the experimental 
facility (e.g. Jimenez 1983; Bernal & Roshko 1986; Bell & Mehta 1 9 8 9 ~ ) .  However, 
beyond a certain downstream location, a reorganization may occur, increasing the 
characteristic spanwise spacing and apparently uncoupling the ribs from the inlet 
disturbances (Bernal & Roshko 1986). The circulation of the streamwise vortices was 
estimated by Jimenez (1983), O’Hern (1990), and Bell & Mehta (1990). Remarkably, 
they found similar values of this circulation during the early development of the 
layer (O.lrz, up to O.lrz, and 0.07rz respectively, where r is the initial spanwise 
roller circulation). 

Some details of the roller and rib structures have been determined in recent 
experiments using controlled inlet conditions. Ho & Huang (1982) investigated the 
long-time evolution of non-pairing rollers and observed that the rollers became 
elliptical and re-entered the braid region, in agreement with numerical simulations 
(e.g. Jacobs & Pullin 1989). I n  experiments where the three-dimensionality was 
controlled by forcing, it was found that the roller core became bent in the direction 
opposite to that of the ribs (Lasheras & Choi 1988 ; Nygaard & Glezer 1991). Nygaard 
& Glezer also found that the bending of the roller was associated with a concentration 
of spanwise vorticity on either the top or bottom of the roller. This is apparently 
caused by alternate spanwise stretching and compression of the vorticity, in 
agreement with the results of Rogers & Moser (1989) and Buell & Mansour (1989). 
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1.2. Theoretical results 
The linear stability of mixing-layer velocity profiles (usually hyperbolic tangent 
or error function) has been well documented (Michalke 1964; Monkewitz & Huerre 
1982; Huerre & Monkewitz 1985). Kelly (1967) and Pierrehumbert & Widnall (1982) 
found a two-dimensional secondary instability that leads to pairing as observed by 
Winant & Browand (1974). Pierrehumbert & Widnall also found that a periodic 
array of Stuart (1967) vortices is unstable to various three-dimensional disturbances. 
In  particular, it  is unstable to three-dimensional disturbances with the same 
streamwise wavelength as the two-dimensional fundamental (translative instability). 
The most unstable spanwise wavelength for the translative instability was found to 
be f of the separation between Kelvin-Helmholtz rollers, although the growth rate 
as a function of spanwise wavelength has a broad peak. A similar analysis of the 
stability of a frozen late-time two-dimensional mixing layer was performed by 
Metcalfe et al. (1987). Corcos & Lin (1984) have extended this analysis by studying 
the three-dimensional instabilities of an evolving two-dimensional base flow, this 
base flow being computed numerically. Their findings are similar to those of 
Pierrehumbert & Widnall (1982) in that there is little dependence of growth rate on 
spanwise wavenumber. It has been proposed (e.g. Moore & Saffman 1975; 
Pierrehumbert 1986 ; Waleffe 1990) that the translative instability is caused by the 
instability of the elliptical flow in the roller cores. 

In another study of three-dimensionality in a mixing layer, Lin & Corcos (1984) 
computed the evolution of a vortex array being stretched along its axis by a plane 
strain. This two-dimensional problem is expected to be a good model of the rib 
.vortices in the braid region of the mixing layer once the Kelvin-Helmholtz rollup is 
substantially complete and the braid region has been depleted of spanwise vorticity. 
This model problem has also been attacked analytically by Neu (1984). If the 
circulation associated with the streamwise rib vortices is large enough (relative to 
their spanwise spacing and the viscosity, see 54.5) they find that the streamwise 
vorticity in the braid region ‘collapses ’ into compact, roughly axisymmetric 
vortices. They also show that it is such collapsed vortices that are responsible for the 
‘streaks ’ and mushroom shapes observed in the flow visualization experiments 
mentioned above. 

1.3. Unanswered questions 
Despite the extensive research efforts that have been directed at  the plane mixing 
layer in the past 20 years, there are many important unanswered questions, some of 
which are described below. Of particular interest in the current work is the early 
development of the mixing layer. While many experimental and numerical studies 
have observed the ‘standard’ structures (rib vortices and spanwise rollers), the 
details of these structures and how they interact are not known. For example, the 
way in which the rib vortices are ‘connected’ to the spanwise rollers has been a 
matter of speculation (Hussain 1983; Bernal & Roshko 1986). Also, the degree to 
which the spanwise roller becomes three-dimensional and how this three-dimen- 
sionality occurs is not well understood. Virtually nothing is known about the 
evolution of the three-dimensional ribs and rollers during a pairing. Moreover, the 
mechanism by which a laminar mixing layer ultimately becomes turbulent has not 
been determined. 

There has also been disagreement as to whether the ‘secondary instability ’, which 
leads to the formation of rib vortices and three-dimensionality, is a ‘ core instability ’ 
or a ‘braid instability’. Some investigators, such as Nygaard & Glezer (1990), view 
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the ribs as a consequence of the bending roller core. Others, such as Ashurst & 
Meiburg (1988), Lasheras & Choi (1988), and Bell & Mehta (1989b) conclude that the 
ribs arise from a braid-region instability related to the mechanism investigated by 
Lin & Corcos (1984). 

The work described here, in Moser & Rogers (1991)’ and in Moser & Rogers (1992b) 
was undertaken to address these questions. In  this paper, we investigate the initial 
rollup of the mixing layer and the development of three-dimensionality. In Moser & 
Rogers (1991, 1992b), the effects of pairing and the transition to turbulence are 
examined. Some preliminary results of this study have appeared in Rogers & Moser 
(1989). 

In $2 background information on the numerical simulations used in this study is 
presented. Linear stability of the two-dimensional mixing layer is discussed in $3,  
and in $4 the nonlinear evolution of three-dimensional disturbances is presented. The 
response to oblique mode disturbances is described in $ 5  and a summary is given in 
$6. 

2. Preliminaries 
The primary tool used in this study is direct numerical simulation of the time- 

developing mixing layer. The time-developing mixing layer may be thought of as an 
approximation to the evolution of a single set of flow structures as they are convected 
downstream in the more common spatially developing layer. The roles of time and 
the streamwise spatial direction are thus reversed. This approximation becomes 
exact as the velocity ratio of the spatial layer approaches one (Buell, Moser & Rogers 
1992). Also, comparisons of spatially and temporally evolving simulations indicate 
that the same dynamical mechanisms occur in both cases for velocity ratios even as 
low as 0.2 (Buell et al. 1992). It is thus expected that the results presented here will 
be relevant to spatially developing mixing layers. A time-developing formulation 
was used in this study because its computational simplicity permits the simulation 
of higher Reynolds numbers and smaller scales. Although only an approximation to 
a spatially developing mixing layer, the temporally evolving layer is also of interest 
as a good model of geophysical mixing layers that form in the absence of a splitter 
plate (Turner 1973) and of the stratified tilting-tank experiments of Thorpe (1968, 
1971, 1973, 1985). 

Numerical simulation has overwhelming advantages in addressing the questions 
outlined in Q 1.3 since the initial (inlet) conditions can be precisely specified and the 
simulations provide a complete description of the flow field. All the simulations 
described here and in Moser & Rogers (1992b) were initialized with simple ‘clean’ 
initial conditions (see $2.2). It is expected that a thorough understanding of the 
vortex dynamics of such ‘ clean ’ flows will enable one to understand the development 
of mixing layers in the more general case of uncontrolled disturbances. These flows 
may be considered to be ‘deterministic models’ of mixing-layer development, in the 
same sense as the work of Corcos & Sherman (1984), Corcos & Lin (1984), and Lin & 
Corcos (1984). The initial conditions were chosen to have relatively short spanwise 
wavelengths to reproduce the ‘ standard ’ structures of ribs and rollers, rather than 
long-spanwise-wavelength phenomena such as dislocations (Browand & Troutt 1980, 
1985), slow spanwise variations of the mean profile (Rogers et al. 1988), spanwise 
variation of the phase of the fundamental disturbance (Nygaard & Glezer 1990), or 
the possible ‘helical ’ pairing of Chandrsuda et al. (1978). 
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2.1. The governing equations and numerical considerations 
The simulations reported here were performed by solving the vorticity equation 
derived from the incompressible Navier-Stokes equations : 

where U(x, y, z ,  t )  is the velocity vector (with components u, v and w), and o = V x U 
is the vorticity vector. Here, U (the half-velocity difference) and 60, (the initial 
vorticity thickness of the layer, see (4)) have been used to non-dimensionalize the 
equations and form the Reynolds number Re, = U60,/v (v is the kinematic viscosity). 
Throughout the paper this non-dimensionalization is used. In addition, the evolution 
of a passive scalar T is computed using the scalar equation 

aT 1 --+ U-VT = - V T ,  
at Pe, 

where the PQclet number is given by Pe, = Re,& and the Schmidt number is 
Sc = v / y  ( y  being the molecular diffusivity of the scalar). 

The above equations are solved using periodic boundary conditions with periods 
L, and L, in the streamwise (x) - -  and spanwise ( z )  spatial directions. In the cross- 
stream (y) direction, o and T -  T (T being the average mean scalar profile) go to zero 
as y + f 00. The x- and z-dependence of the independent variables are represented by 
finite Fourier series and the y-dependence is represented by a polynomial expansion 
in the mapped variable 7 = tanh (yly,,), where yo is a mapping parameter (usually set 
to be on the order of the final layer thickness). The y-dependence of the velocity U 
is represented using additional special expansion functions that exactly represent the 
slow decay of velocity perturbations far from the layer. The computational method 
was developed specifically for the simulation of three-dimensional free shear layers. 
It is a spectral Galerkin method and exhibits ‘infinite-order ’ accuracy of the spatial 
discretization. A detailed description of the method can be found in Spalart, Moser 
& Rogers (1991). The equations were advanced in time using a compact third-order 
Runge-Kutta scheme of the form proposed by A. Wray (personal communication, 
see Spalart, Moser & Rogers 1991 for details). The Galerkin quadratures involving 
the nonlinear terms are computed using Gauss quadrature with sufficient points to 
eliminate aliasing. A typical three-dimensional rollup simulation (those in $$4 and 5 )  
required 64 x 128 x 64 Fourier/Jacobi modes (see Spalart et al. 1991) and 12 hours on 
a Cray Y-MP. 

2.2. Specijcation of initial conditions 
The self-similar solution for the streamwise velocity profile of the laminar temporally 
evolving plane mixing layer is a viscously spreading error function. Thus, an error 
function, 

is used for the initial mean streamwise velocity profile in the simulations discussed 
here. Note that this profile has a vorticity thickness 

O = Uerf(dy/SO,). (3) 

of e. Other initial mean streamwise velocity profiles were also used for a few 
1 FLM 243 
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simulations (see Rogers & Moser 1991). In  all cases the initial mean passive-scalar - 
profile is given by 

(5) 
The. magnitude of the scalar is arbitrary because (2) is linear in T. 

In addition to the mean velocity, simple perturbations are included in the initial 
conditions. These perturbations include just one or a few of the x- and z-Fourier 
modes of the representation. Streamwise and spanwise fundamental wavelengths (A,  
and A,) are chosen as the most unstable wavelengths from linear theory (A ,  = 2.327c, 
see Monkewitz & Huerre 1982 and A, = 0.6A,, see $3 and Rogers & Moser 1992) and 
perturbations with these wavelengths are used in the initial conditions. To 
accommodate these perturbations, the computational domain must be an integer 
multiple of the wavelengths in the x- and z-directions. Thus, in general, Lx = NA, and 
L, = MA,. N and M are 1 for all cases reported here (they are as large as 8 for cases 
in Moser & Rogers 19926). 

To specify the initial conditions and facilitate discussion throughout this paper, it 
is necessary to refer to specific wavenumbers; they will be referred to in ordered pairs 

where k, and k, are the x and z wavenumbers respectively. Thus the initial 
perturbations discussed above have energy in modes with a and/or p equal to 1. Note 
that because the quantities under consideration are real, the (a,/3) mode of their 
Fourier transform is the complex conjugate (denoted byl) of the ( -a ,  -/3) mode. 
Thus only modes with a >, 0 need to be considered here. 

The amplitude of a given Fourier mode (of an initial perturbation or in the evolved 
field) can be measured by the integrated (in y) r.m.s. velocity of the mode. Thus we 
define 

'\J-CC 

Here &(a,/3) is the (a,/3) Fourier coefficient of the velocity component ut. Note that 
A ,  is only defined for non-negative a and p since it includes the contributions of all 
the (fa, f/3) modes. The amplitude associated with all modes with a particular 
spanwise wavenumber and the amplitude of all three-dimensional Fourier modes 
(p $; 0) are also of interest. They are denoted by A,, and A,, respectively, where the 
subscript s signifies a sum over streamwise wavenumbers a,  and are defined 

Note, that as a special case, A,, is the amplitude associated with all two-dimensional 
modes. Throughout this paper, A,, A,, and A,, are quoted normalized by U(60,);. A 
superscript 0 (e.g. A$) will be used to denote the amplitude a t  t = 0 and a superscript 
* will indicate the amplitude normalized by its value a t  t = 0 (e.g. A:, = Ao,,/A:,). 

All the simulations reported here were initialized with perturbations in the ( 1 , O )  
mode, which leads to the Kelvin-Helmholtz rollup of the mixing layer. For this 
mode, the initial perturbation spanwise vorticity has the form 

o, = A:,, Re (f(y) e(kzx-$lo)), 49) 
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FIQURE 1. Surfaces of constant vorticity magnitude at t = 0. (a)  w,  = - 1.9 ; also shown are the mid- 
braid plane (MP) and roller core plane (CP). ( b )  w, = f0.2; also shown are the rib plane (RP), the 
between-ribs plane (BP), and some vortex lines. Negative vorticity levels are shown by cross- 
hatched surfaces, positive levels by solid surfaces, and tic marks are at So, intervals. 

where Re signifies the real part of a complex argument. The complex functionf(y) is 
the stability eigenfunction for the vorticity, determined from the Orr-Sommerfeld 
equation. The eigenfunction is normalized such that its integrated energy is I ,  its real 
part is symmetric in y and positive at y = 0, and its imaginary part is antisymmetric. 
The phase #lo is irrelevant to the evolution of the flow. It is set to zero to position 
the roller in the centre of the computational domain. The amplitude A;o was chosen 
to be 0.10 for all flows discussed here. 

In  most cases, three-dimensionality was introduced in the simulations by including 
initial perturbations in the (0, k 1) modes. These are referred to as STI (STreamwise 
Invariant) disturbances. For this mode, only the streamwise vorticity component is 
made non-zero and the following functional form is used : 

where c is a normalization constant selected such that the integrated energy is unity 
when A!l is 1. An eigenfunction is not used for this mode because there are no 
eigenfunctions that satisfy the boundary conditions. As with the ( 1 , O )  mode, the 
phase is irrelevant to the flow evolution and for convenience is set to zero. For 
reference, the vorticity components of the standard initial condition discussed above 
are depicted in figure 1 (amplitude from the ROLLUP simulation, see $4.3). 

These initial conditions were selected largely because they lead to structures of the 
type commonly observed in experimental spatially developing mixing layers. They 
are also representative of the disturbances expected to be present in experimental 
mixing layers. The two-dimensional rollup disturbance is likely to arise in an 
experimental apparatus due to the trailing edge of the splitter plate (see $4.2 of Ho 
& Huerre 1984). Streamwise vortices are also expected because wind-tunnel 
imperfections introduce such vortices into the splitter-plate boundary layers (e.g. 
Jimenez 1983). 

Other three-dimensional perturbations were also used for simulations in this 
paper. These include cases with disturbances in the oblique Fourier modes (1, +_ 1). 
Details of the initialization in these flows are given in 55, where the simulations are 

7-2  
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discussed. I n  addition, various other perturbations have been used (see Rogers & 
Moser 1991), and, with few exceptions, the mixing-layer evolution was similar to that 
described in 54.3. Thus the standard initial conditions used here lead to a ‘typical’ 
flow evolution. 

2.3.  Flow symmetries 

The initial conditions (9) and (10) described in $2.2 possess two spatial symmetries 
that are preserved by the NavierStokes equati0ns.t The first symmetry is a z-plane 
reflection symmetry, 

1 (11) 
w,(x,y,z) = -wt(x,y,-z+2z,), i = x o r  y, 

w,(x ,  y, 4 = w,@, y, - z+ 22J. J 
where z = z, is a symmetry plane. There are two such symmetry planes in the 
domain, located a t  z = 0 and $A, for the initial condition in (10). Note that both w, 
and wy are zero in these symmetry planes. The second is a point-reflection symmetry, 

OJX,  y, 2 )  = wt( -x+ 2x,, - y, - 2  + 2 4 ,  (12) 

where (2, y, z )  = (x,, 0, zs)  is a symmetry point. There arc four such symmetry points 
in the domain, located a t  (0, 0, $A,), (O,O,$A, ) ,  ($A,, 0, ;A,), and (;A,, 0, :A,) for the initial 
conditions in (9) and (10). 

These symmetry planes and points provide well-defined reference locations in the 
developing flow. The Kelvin-Helmholtz roller that develops is centred a t  x = +Ax, the 
x-location of two of the symmetry points. The braid regions between the rollers form 
centred on the other symmetry points a t  x = 0 (and by periodicity at x = Az). The 
rib vortices that form in the braid region (see 5§3 and 4) are centred a t  the x = 0 
symmetry points. This allows the definition of four special planes that will be used 
to  view the simulated flow fields (see figure 1). Two are (x,y)-planes: the between- 
ribs plane (BP) and the rib plane (RP). The between ribs-plane is located halfway 
between the ribs and is coincident with the planes of symmetry a t  z = 0 and +A,. The 
rib planes a t  z = :Az and iAz  pass through the ribs halfway between the BP’s and 
contain the symmetry points. Note that the B P  is not well defined if the plane 
symmetry (11) is broken and the RP is not well defined if the point symmetry (12) 
is broken. The other two planes are ( 2 ,  y)-planes and are defined with respect to the 
two-dimensional perturbation. The mid-braid plane (MP) passes through the middle 
of the braid region and the roller core plane (CP) passes through the middle of the 
roller core (for the disturbance given in (9), the M P  is at x = 0 and the CP is a t  
x = ;A,). If the point-reflection symmetry is present, then the M P  and C P  contain the 
syihmetry points. 

The presence of these symmetries in the flows considered here simplifies the 
analysis of the simulations by allowing unambiguous definitions of the special planes 
discussed above as well as other items (e.g. rib circulation and rib vortex lines). Of 
course laboratory mixing layers do not possess these symmetries ; therefore, flows 
that break one or both of the symmetries have been simulated to confirm that the 
insights gained from these idealized symmetric cases are valid in general. Indeed, 
flows without these symmetries evolve qualitatively like the typical symmetric flow 
evolution (see $55.3, 5.4; Rogers & Moser 1991; Moser & Rogers 1992b; Rogers & 
Moser 1992). 

order of 
t Because of numerical roundoff error. the initial integrated asymmetric enstrophy is on the 

of the integrated enstrophy in the domain. This increases in time, but remains below 
in the simulations described here. 
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3. Three-dimensional instability of the two-dimensional mixing layer 
There are at least three reasons why it is important to consider the corresponding 

two-dimensional flow when studying the development of three-dimensional mixing 
layers. First, studying the effects of varying the parameters in two-dimensional 
simulations suggests how the two-dimensional simulation parameters (e.g. two- 
dimensional disturbances, Reynolds number) should be selected for three-dim- 
ensional simulations. The more detailed examination of various two-dimensional 
mixing layers in Rogers & Moser (1991) resulted in the choice of the parameters given 
in 82.2. The Reynolds number was taken to be Re, = 500 for reasons discussed in 
$3.1.  Second, a good way to quantify the effects of three-dimensionality is to 
compare three-dimensional flows to their two-dimensional counterparts. I n  the 
sections that follow, several such comparisons will be made. Finally, several aspects 
of the two-dimensional evolution have important consequences in three-dimensional 
flows. In particular, the response of the layer to three-dimensional disturbances is 
driven by events in the underlying evolving two-dimensional flow. 

Pierrehumbert & Widnall (1982, referred to as PW below) addressed the stability 
of the two-dimensional steady (inviscid) Stuart vortices given by 

where the core size parameter p was taken to be 0.25 to  match the experimental 
vorticity distributions of Browand & Weidman (1976). Of particular interest are the 
perturbations in PW that lead to  the so-called translative instability. Such (oblique) 
disturbances have the same streamwise wavenumber as the fundamental two- 
dimensional disturbance. PW found that three-dimensional disturbances with 
&/Ax z 0.6 are most unstable. However, the growth rate is not sensitive to the choice 
of A,. In  particular, growth rates decline slowly with decreasing wavelength, though 
for larger wavelengths there is a sharper cutoff. Corcos & Lin (1984) considered the 
full complexity of the time-evolving two-dimensional base flow. They also found that 
the growth rates of three-dimensional disturbances are relatively insensitive to 
spanwise wavelength. Our own linear analysis (see Rogers & Moser 1992) suggests 
that A,/A, x 0.6 also produces the largest long-term growth in a pairing mixing 
layer. Therefore, this value of h,/A, is used in the computations presented here. 

To facilitate comparison with the fully nonlinear simulations in $4, computations 
similar to those of P W  and Corcos & Lin (1984) were performed. The evolution of 
both two-dimensional mixing layers and three-dimensional small disturbances 
evolving on them are discussed in this section. 

3.1. Evolution of three-dimensional perturbations 
The visualization of the translative instability presented in PW (their figure 8) 
indicates a kinking of the spanwise roller. However, experimental and computational 
results suggest that streamwise rib vortices are usually present and might therefore 
be expected to be part of the eigenfunction. PW do not present the streamwise 
vorticity component of their eigenfunction, so we examined our inviscid eigen- 
function and i t  indeed has rib vortices in the braid region. However, there is a 
problem with these computed eigenfunctions (both ours and PWs). An analysis of the 
stability equations near the symmetry point in the middle of the ribs suggests that  
the streamwise and cross-stream vorticity of the eigenfunction are singular there. 
This singularity is related to the critical-layer singularity of inviscid eigenfunetions 
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FIGURE 2. Contours of perturbation (a) w, in the z = 0 BP and ( b )  w, in the 2 = iAZ  RP of the Stuart 
vortex eigenfunction (p  = 0.25) with Az = 0.6A,. The contour increment is one tenth of the 
maximum perturbation spanwise vorticity. Solid contours indicate positive vorticity, dotted 
contours indicate negative vorticity, and tic marks are at intervals. 

in many shear flows. Such a singularity makes i t  impossible to represent the 
eigenfunction accurately with the spectral numerical methods used here and by PW. 
Despite this, the growth rate can be determined because resolution sufficient to  
accurately represent the base flow (the Stuart vortices) is adequate to  obtain a good 
approximation to the eigenvalue, regardless of how poorly the eigenfunction is 
resolved. This is reflected in the agreement between the eigenvalues computed here 
and by PW, though the current computations have 16 times better resolution in both 
coordinate directions. 

To allow the Stuart vortex eigenfunction to be represented accurately, a small 
viscosity was introduced into the disturbance equation (Reynolds number is 29200 
based on AU and the Stuart vortex wavelength, A x ) .  Inclusion of this small viscosity 
does not change the eigenvalue, a t  least to the accuracy reported by PW (1.45U/hx). 
The spanwise and streamwise vorticity of the resulting eigenfunction are shown in 
figure 2. The spanwise vorticity contours are similar to those shown by PW for the 
translative instability, though the superior resolution of the current computation 
improves the representation of the details. Also there is streamwise vorticity in the 
braid region (positive in the plane depicted), which can be identified as a rib vortex. 
Streamwise vorticity of opposite sign is also present in the Stuart vortex cores. This 
is consistent with PW’s association of the perturbation with the bending of the 
spanwise vortices, since the core vortex lines are bent in the streamwise direction, 
producing a region of w, in the core. 

The Stuart vortices are not really an adequate representation of the two- 
dimensional mixing layer since they have too much vorticity in the braid region 
(Browand & Weidman 1976) and do not evolve in time. These problems are avoided 
in the linear perturbation computations performed by Corcos & Lin (1984). In their 
computations, three-dimensional infinitesimal disturbances were allowed to evolve in 
the presence of a rolling up (and pairing) two-dimensional mixing layer at finite 
Reynolds number. The initial conditions were similar to those used in the OBLIN 

simulation (see 55.1) and the Reynolds number Re,, was 100. Their calculations show 
that by the time the mixing layer has rolled up, the three-dimensional perturbation 
exhibits the bending core characteristic of the translative instability as well as rib 
vortices in the braid region. We performed a similar calculation using parameters and 
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FIGURE 3. Contours of w, in the two-dimensional base flow. Contour increment is -0.2 and tic 
marks are at intervals. (a) t = 9.8 (7, = i O . i ) ,  ( b )  t = 14.6 = 7,. 

initial perturbations identical (except for amplitude) to the STI disturbance cases 
reported in 54 (in addition to repeating their case at various values of Re, and many 
others). This calculation can therefore be directly compared to the LOROLL, ROLLUP, 

and HIROLL simulations discussed in 5s4.2, 4.3, and 4.4, respectively. 
Before considering the development of the three-dimensional perturbations in this 

simulation, we briefly consider the relevant properties of the two-dimensional base 
flow. In figure 3, the spanwise vorticity distribution is shown at two times. The first 
time is approximately the rollup time (designated 7, and equal to 10.1 for the flow 
shown), which is defined to be the time at which A,, attains its first maximum. As 
has been observed by others, the two-dimensional instability saturates when the 
spanwise vorticity in the mixing layer rolls up into a Kelvin-Helmholtz roller, 
leaving the braid regions largely depleted of vorticity. After this time (7,) the 
spanwise vorticity i s  carried back into the braid region, resulting in a decrease in the 
two-dimensional disturbance amplitude Ale. Later the spanwise vorticity moves 
farther into the braid region until it crosses the mid-braid plane (MP) halfway 
between neighbouring rollers (see figure 3b). The roller is then said to be 
' oversaturated ', and this time is referred to as the oversaturation time 7, (14.6 for the 
flow in figure 3 b).  

The oversaturation time can be determined by examining the evolution of mid- 
braid vorticity -wb, where wb is the minimum (most negative) of the spanwise 
vorticity in the MP (see figure 4a). As vorticity is drawn out of the braid region 
during the rollup, -wb decreases. When vorticity re-enters the M P  at 7,, there is a 
sudden jump in -wb. Thus 7, is defined to be the time at which -wb attains a (first) 
minimum. The integral in y of the spanwise vorticity in the M P  could also be used 
as an indicator of oversaturation. This quantity behaves like wb, and would result in 
only slightly different values of 7,. Interestingly, there is also a sudden temporary 
decrease in the mid-braid principal strain rate (8) at 7, (figure 4b). (Note that the 
direction of the extensional principal strain rate in the braid region is aligned with 
the braid.) Note also, that because of the shear associated with the initial mean 
velocity profile, the principal strain rate is approximately 1 at t = 0. 

Results for several different Reynolds numbers are shown for comparison with the 
standard Reynolds number of 500 in figure 4. The time at  which the jump in -wb 
occurs does not depend on the Reynolds number and the magnitude of the jump 
increases with Reynolds number. This indicates that the mechanism by which the 
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vorticity is brought back into the braid region is not viscous. Indeed, the inviscid 
computations of Jacobs & Pullin (1989) exhibit a similar oversaturation. The 
sharpness of the minimum in -wb does depend on Reynolds number, however. The 
minimum in the Re, = 100 case is weak and broad. We take this to be an indicator 
of an excessively low Reynolds number since it is qualitatively different from the 
higher-Reynolds-number cases. Similarly, the momentum thickness, 
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and the minimum (most negative) value of the spanwise vorticity over the domain 
(wZmin) indicate significant low-Reynolds-number effects for Re, = 100, and some 
effects even a t  Re, = 250. (Note that uZmin is constant a t  infinite Reynolds number.) 
It appears, however, that  Re, = 500 is a sufficiently large Reynolds number to 
eliminate significant low-Reynolds-number effects. For this reason 500 was chosen to 
be the Reynolds number for the cases discussed in this paper. 

Two important measures of the growth of the three-dimensional perturbations are 
used here. These are the amplitude of the perturbation (A,,, see $2.2 for definition) 
and the streamwise circulation in the braid region (r,), which measures the strength 
of the ribs. The streamwise circulation is defined : 

%-Az12 

r x  = [to2 O, dzdy = - La vdy I%-, ' (15) 
g--m 

and can be evaluated at any streamwise location. Both A&, and for several x 
locations are shown in figure 5 (the superscript * indicates normalization by the value 
at t = 0). These curves exhibit several interesting properties. The amplitude A3$ 
increases rapidly a t  first, plateaus, and then shortly after r, begins an apparently 
exponential growth. The circulation does not grow until t x 4, reaches a plateau 
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FIGURE 5. Time development of normalized three-dimensional amplitude A,*, ( .  * . . . * - ) and 
normalized streamwise circulation for a STI disturbance with A, = 0.6AZ. Dashed lines are for 
r: at various braid region locations progressively further from the MP as the curves move away 
from the solid line. 

(most evident for the MP curve), and then undergoes a sudden jump. This sudden 
jump occurs at different times for different x-locations. In the MP, the jump in 
circulation occurs a t  7,. 

The evolution of the circulation can be understood by examining the equation 
governing r, derived from the Navier-Stokes equations (here the inviscid case is 
considered for simplicity), 

(uw,)dy~Az’z = y--m (ug)dylAz”. %-0 
2-0 

Since uw, has no spanwise variation in the initial condition, the initial growth rate 
of r, is zero (in the absence of viscosity) as shown in figure 5.  Also, when o, is 
completely removed from a given streamwise location, r, cannot increase a t  that 
location. The depletion of spanwise vorticity from the braid region is thus responsible 
for the plateau in c. After 7,, when spanwise vorticity starts re-entering the braid 
region, a t  the various x-locations begins to increase. At  each x-location, the 
circulation jumps as the re-entering vorticity reaches that plane, with the jump 
occurring first for locations farthest from the MP. After T,, spanwise vorticity 
remains in the braid region and < grows continuously. 

The initial growth of A,, is a consequence of the STI initial condition used. As 
discussed in 52.2, only the streamwise vorticity (w,) is initialized in the STI modes. 
Such streamwise vorticity in the presence of a mean shear produces a spanwise 
corrugation in the streamwise velocity, resulting in an increase in the three- 
dimensional energy. This increase in three-dimensionality occurs independently of 
the rollup of the mixing layer, and can occur in other shear flows (Kim & Moser 1989). 
I t  is not associated with an instability. Exponential growth of A,, begins at 7 x t , ,  
when the first values jump. This suggests that spanwise vorticity in the braid 
region and the corresponding growth of the rib circulation may be necessary for the 
three-dimensional instability. This is consistent with the results of PW, since the 
Stuart vortices have significant spanwise vorticity in the braid region. 

The growth characteristics of A:, and < shown in figure 5 were not observed by 
Corcos & Lin (1984) because their Reynolds number was too small (Re, = 100). Their 
low Reynolds number results in a qualitatively different two-dimensional evolution 
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FIGURE 6. Contours of (a, c, e )  perturbation spanwise vorticity (wz") in the BP and ( b ,  d, f )  w, in the 
RP of an infinitesimal STI disturbance at  (u,  b )  t = 9.8 (7, = 10.1), ( c , d )  t = 14.6 = 7, and (e,f) 
t = 25.0. Contour increments are (u, b )  k0.4rz/Tr, (c, d )  k0.75rz/Tr, and (e , f )  k l.Orz/rr, where f, 
is the initial circulation of the ROLLUP simulation (see $4.3). Solid contours indicate positive 
vorticity, dotted contours indicate negative vorticity, and tic marks are a t  60, intervals. 

(see figure 4). In  particular, u,, does not undergo a sudden jump as it does a t  higher 
Reynolds numbers. In  addition, Corcos & Lin used oblique three-dimensional modes 
(rather than STI disturbances) and mostly larger spanwise wavelengths than those 
used here, ranging from 0.63A, to 2 .04 .  Such disturbances are unstable in the 
presence of the mean shear, even without the Kelvin-Helmholtz rollup. The early- 
time growth was therefore dominated by the shear instability. 



Three-dimensional evolution of a plane mixing layer 

i 1""" 
I I . : .  

197 

I 1- -- 
z z 

FIGURE 7 .  Contours of w, in the (a) MP and ( b )  CP for the three-dimensional linear perturbation 
a t  t = 9.8 (7, = 10.1). The contour increment is 0.4r;/Tr. Otherwise, as figure 6. 

Contours of the perturbation spanwise and streamwise vorticity components a t  
three times are shown in figure 6. The spanwise vorticity has a cosine variation in the 
spanwise direction, and the streamwise vorticity has a sine variation. As can be seen 
in figure 6, the linear perturbations have the following line symmetry: 

(17) I wi( 2, y , z )  = wi( - ~tr + 234, - y , z ) ,  i = 2 or y ,  
w, 3D (z,y,z) = -wZ3D(-2+22,,-y,2), 

where z, = 0 or $Az. This symmetry is preserved by the linearized equations but not 
by the Navier-Stokes equations. 

Clearly, rib vortices are present in the braid region of this flow. Also, like the Stuart 
vortex eigenfunctions, there is a region of streamwise vorticity in the core with sign 
opposite that of the rib vorticity. This is remarkable because the initial condition has 
w, with the same sign as the ribs in the core as well as the braid region. At 7, (figure 
6 b ) ,  there are also two small regions of weak streamwise vorticity between the ribs 
and the opposite-signed core region (marked 'A '  in the figure) ; we have named these 
smaller structures 'sub-ribs.' The sub-ribs form at the edge of the roller, where the 
roller spanwise vorticity is affected by the ribs and the two-dimensional strain in the 
braid region. Later (at 7,, figure 6 4 ,  the sub-ribs become more substantial, extending 
further into the braid region. Finally, by t = 25.0, viscosity has caused the sub-ribs 
to merge with the main ribs. 

A t  7,, the perturbation spanwise vorticity is dominated by positive and negative 
regions in the braid region, lying above and below the rib vortices. This is due to the 
corrugation of the mean velocity by the rib vortices as discussed above. There are 
also weaker positive and negative vorticity perturbations in the middle of the core. 
These core w, perturbations become stronger in time until, as at t = 25.0, they are 
dominant. At  this time, the perturbation is qualitatively similar to the Stuart vortex 
eigenfunction shown in figure 2. The disturbance in the core is again associated with 
the bending of the roller. Since the streamwise vorticity in the core is opposite in sign 
to that in the ribs, the bending of the spanwise rollers is out of phase with the kinking 
of the rib vortex lines. 

An indication of what is causing the bending of the rollers can be obtained by 
examining the perturbation streamwise vorticity in the core plane (CP) shown in 
figure 7 ( b ) .  The rib vortices passing above and below the roller, together with the 
streamwise-vorticity region in the core, form quadrupoles of streamwise vorticity 
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centred in the BP’s (between-rib planes). On one side of the roller (top or bottom) in 
a given BP, the strain is extensional in the spanwise direction, resulting in stretching 
and enhancement of the spanwise vorticity therc. On the other side, the spanwise 
strain is compressivc, diminishing the spanwise vorticity. This results in the w, 
perturbation shown in figure 6. 

It seems clear that the late-time evolution (t  % 7,) of the three-dimensional 
perturbation in the evolving two-dimensional base flow is governed by the translative 
instability as identified by PW since both the structure of the perturbation and the 
growth rate (1.46U/hZ at t = 25.0) are similar to those of the translative instability. 
However, it  is equally clear that the early-time evolution ( t  < 7,) is not associated 
with the translative instability since the perturbations have a different structure 
(figure 6) and the three-dimensionality is not increasing. This is not surprising since 
the two-dimensional flow does not resemble the Stuart vortices until after r,, 
especially with regard to  the presence of spanwise vorticity in the braid region and 
the ellipticity of the roller. 

3.2. Characterization of the three-dimensional instability 
Since the discovery of the translative instability by PW, there has been considerable 
speculation as to its fundamental cause. Based on the observation that the 
perturbation energy is concentrated in the cores, both PW and Corcos & Lin (1984) 
suggested that it was an instability of the roller cores alone. Corcos & Lin state that 
‘it is likely that the strong streamwise vorticity that appears and persists in the 
central part of the braids.. . is caused early on by the original shear instability rather 
than the translative instability, and thereafter leads a fossil life.’ Following this 
reasoning, various researchers have interpreted their experiments or computations 
as evidence of a core instability (e.g. Nygaard & Glezer 1990), or alternatively a braid 
instability (e.g. Ashurst & Meiburg 1988; Lasheras & Choi 1988; Bell & Mehta 
1989b). The term ‘braid instability’ is usually used in reference to the mechanism 
investigated by Lin & Corcos (1984), by which the rib vortices collapse (see 554.3.2 and 
4.5), although this is not really an instability (Lin & Corcos did not claim it was). 
While it may be useful, in attempting to understand the translative instability, to 
distinguish between instability mechanisms that are localized to the roller cores or 
the braid region, the results discussed above make it clear that perturbations in the 
core and the braid grow together. Therefore, in interpreting results of experiments or 
simulations, the three-dimensional instability should be considered to be a global 
instability of the entire flow. 

Several researchers have performed stability analyses of a two-dimensional 
‘elliptic flow’ with uniform strain and rotation (Bayly 1986 ; Pierrehumbert 1986 ; 
Landman & Saffman 1987 ; Waleffe 1990), which is a simplified model of the stability 
of a distributed vortex in a strain field (studied by Moore & Saffman 1975 and Tsai 
& Widnall 1976). These analyses have been put forth by the authors as models for 
the translative instabilit,y. The elliptic flow instability described in these studies 
occurs because there are inertial waves on the vortex that do not rotate and 
can therefore stay aligned with the direction of extensional strain, resulting in 
exponential growth. 

By applying the weak-strain asymptotic solutions of Waleffe (1990) to the core of 
the Stuart vortex, one can obtain predictions for the maximum growth rate and the 
spanwise wavelength a t  which this maximum growth rate should occur. Using the 
strain rate and vorticity a t  the centre of the Stuart vortex as the strain rate and 
vortieity of the elliptic flow, and taking the maximum vertical displacement of the 
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FIGURE 8. Evolution of the (a) rotation (tlwzI) at ~ , the mid-braid location (z = 0, y = 0) ; and 
_ _ _ _  , the mid-roller location (r = 4Az, y = 0) ; and the principal strain rate (7) at * * . * * . . , the mid- 
braid location ; and ---, the mid-roller location for the two-dimensional flow at Re,, = 500. ( b )  
Growth rate of a three-dimensional perturbation to the two-dimensional flow determined from 

, the elliptic flow analysis of Waleffe (1990) ; ----, an initial STI disturbance, and . . . . . . . , 
an initial oblique disturbance. 

dividing streamline as the minor axis of the elliptical vortex, the following growth 
rate (u) and spanwise wavelength (A,) are obtained: 

2 - = - cosh-l(l+ 2p).  
A, 

For the case computed here and by PW (p = 0.25), the predictions are u = 1.41U/A, 
and A, = 0.61A,, which are in good agreement with the results of PW. Additionally, 
the elliptic flow results suggest that  there should be a minimal decrease in growth 
rate as the spanwise wavelength is decreased, but a strong dependence on wavelength 
for longer-wavelength disturbances. This is also in agreement with PW's results. 
Finally, the form of the vorticity perturbations (see Waleffe 1990), is qualitatively 
similar to the Stuart vortex eigenfunctions shown in figure 2, except they contain no 
ribs. 

Similarly, the analysis of Waleffe can be applied to an evolving two-dimensional 
flow to obtain an estimate of the maximum growth rate of a perturbation as a 
function of time. The result of such an analysis is u = *( 1 -4y2/u,2);, where the 
principal strain rate y and the spanwise vorticity are evaluated at the centre of the 
roller and are shown in figure 8 ( a )  for this flow. The predicted growth rate is shown 
in figure 8 ( b )  along with the growth rates of two perturbations (one, the STI 
disturbance discussed in $ 3.1, the other an oblique-mode eigenfunction with the same 
spanwise wavelength; see $5). By t = 7, = 14.6, when the translative instability 
should dominate, the growth rates are in good agreement with the elliptic flow 
theory. At early time, no agreement is expected since the layer has not yet rolled up. 
Note that the large growth at early time does not occur for the oblique modes 
because the disturbances are eigenfunctions. Between t = 7 and 9, all three growth 
rates have a minimum, which in the case of the simulations is associated with the 
plateau in A,, as discussed in $3.1. The (weaker) minimum in the modelled growth 
rate occurs when the roller is most circular (roller strain rate is minimum). The 
principal strain rates in the centre of the roller and a t  the mid-braid location have 
similar magnitudes (and are identical for Stuart vortices). It is thus the level of 
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rotation (vorticity) that  determines the local character of the flow ; strain-dominated 
in the braid region where spanwise vorticity is depleted and rotation-dominated in 
the roller core where it is not. 

The elliptic flow analysis neglects the rib vortices. In  the braid region, the elliptical 
flow assumptions break down because the strain component of the deformation is 
stronger than the rotational component. The braid region is thus a ‘hyperbolic ’ flow. 
A similar analysis for hyperbolic flows has not yet been performed, but it is not 
unreasonable to expect that such flows are unstable, as suggested by the discussion 
of rib circulation growth in $3.1. If so, there would be two essentially independent 
instabilities, which would have to ‘negotiate’ a growth rate in order to grow together 
as an eigenfunction as observed (the growth rate being approximately that of the 
elliptic instability). The elliptic flow analysis also does not correctly predict the 
magnitude of the growth minimum around t = 8. This suggests that something else 
is controlling the growth rate, and, in the light of the discussion in $3.1 regarding the 
rib circulation growth, the rib growth is a likely candidate. The importance of the 
ribs in governing the growth of three-dimensionality before oversaturation is more 
apparent when pairings occur (see Moser & Rogers 1992b). 

4. Three-dimensional rollup 
Several three-dimensional mixing layers that evolve from finite-amplitude initial 

three-dimensional disturbances have been simulated. The cases considered here are 
listed in table 1 along with values of T ~ ,  7,, 7, (a ‘collapse’ time defined in $4.3.2), and 
properties of the initial condition for each case. The initial conditions are defined by 
the wavenumbers and initial amplitudes of the three-dimensional disturbances. The 
functional form of the ( 0 , l )  disturbances is given by equation (10) and that of the 
( 1 , l )  disturbances (including the phase $,,) is described in $5. 

I n  this section, the three flows LOROLL, ROLLUP, and HIROLL are compared with 
each other and with the linear theory results of $3.1. These flows differ only in the 
initial amplitude of the three-dimensional perturbation, with ROLLUP being most 
representative of several experimental observations (see $4.3). The LOROLL dis- 
turbance is a factor of 5 weaker than that in ROLLUP, and that in HIROLL is a factor 
of 4 stronger. In addition, all five flows with ( 0 , l )  perturbations are used to evaluate 
the Lin & Corcos collapse criterion in $4.5. 

4.1. The onset of three-dimensional nonlinearity 
I n  figure 9 the evolution of the two three-dimensionality measures A,*, and are 
shown. From the figures it is clear that the LOROLL flow evolution is well-predicted 
by linear theory. The ROLLUP flow exhibits moderate nonlinear effects, especially a t  
late times (after 7, = 13.5), and the HIROLL flow is highly nonlinear from the 
beginning (A:D = A& = 3.3.4:, in HIROLL). In  ROLLUP, the plateau level of the rib 
circulation prior to 7, is well predicted by linear theory despite the nonlinear effects 
evident in the flow structures ($4.3). Note that for all flows, the circulation 
undergoes a sudden increase as vorticity re-enters the mid-braid plane, as discussed 
in $3.1. 

The evolution of several quantities characterizing the two-dimensional (spanwise- 
averaged) flow is shown in figure 10. Included are the Fourier amplitude A,,  and the 
momentum thickness S,, as well as the mid-braid spanwise vorticity and strain rate 
( -wb and S ,  both computed from the spanwisc-averaged flow). As with AZD and c, 
the HIROLL evolution is qualitatively different from the others (note the extra 
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FIQURE 10. Time development of (a) amplitude A,,, ( b )  momentum thickness, (c) mid-braid 
spanwise vorticity, and (d )  mid-braid strain rate. 

Simulation 

LOROLL 

ROLLUP 

HIROLL 

LOWRE 

WIDEROLL 

OBLIN 

OBLOUT 

OBLMID 

7, 7, 7, (a, PI 
10.1 14.1 $ 7 ,  (0,1) 
9.8 13.5 8.8 (0 , l )  
7.5 12.lt 4.9 (0 , l )  

10.1 12.9 %70 (0,1) 
9.9 13.8 B 7, (0>1) 

10.2 13.4 7.3 ( 1 , l )  
9.9 13.7 (191) 

10.0 13.0 8.2 ( 1 , l )  

WrZ 
0.005 
0.025 
0.100 
0.025 
0.025 
0.025 
O.OO0 
0.018 

$11 4 D  

0.0166 
0.0832 
0.3327 
0.0832 
0.07 11 
0.0612 
0.0612 
0.0612 

t Actual re-entry of spanwise vorticity at t x 14.5 (see 54.4). 

TABLE 1 .  Parameters of the three-dimensional simulations. Pr = 1.0 and A, = 2.327~ for all cases, 
Az = 0.6A, for all cases except WIDEROLL (A, = A,), Re, = 500 for all cases except LOWRE (Re, = 100) 
and the initial two-dimensional fundamental disturbance is given by (9) with A:, = 0.10. 
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FIQURE 1 1 .  Time development of vorticity component extrema; (a)  wZmjn, ( b )  wZma,, (c) o,,,,,~, and (d )  
wymax (note wZmin and w,,,,,,,, are equal in magnitude but opposite in sign to w,,,, and uymax, and 
extrema for the two-dimensional flow are zero except in (a)).  

minima in -wb and S at t x 2, for example). As expected, the amplitude A,,  and the 
thickness of 8, exhibit minimal nonlinear effects for LOROLL and moderate effects for 
ROLLUP ; increased three-dimensionality producing more rapid layer growth and 
more rapid saturation of the fundamental (smaller T ~ ) .  In  contrast, there are 
departures from the two-dimensional evolution of -ob and S at early time for all 
three-dimensional flows, even for LOROLL. This early departure from two dim- 
ensionality is caused by the corrugation of the layer by the ribs, which reduces the 
maximum of the averaged vorticity and strain rate by making the y-location of the 
(unaveraged) maxima vary with z. Unlike the other quantities (A,*,, c, A,,, and a,), 
the differences in the evolution of -wb and S are not necessarily a result of the 
nonlinear evolution of the three-dimensional perturbations because such a cor- 
rugation of the layer is produced by the linear interaction of the three-dimensional 
disturbance with the mean. Thus, the early-time departures of -wb and S are 
indicative of the finite amplitude of the disturbance but not necessarily of nonlinear 
evolution. 

The extrema of the vorticity components shown in figure 11 are also measures of 
three-dimensionality. The erratic behaviour of the HIROLL extrema is indicative of 
the complex vortex structure in this flow (see 54.4). As with& and r,, the vorticity 
extrema can be normalized to  allow direct comparison with linear theory, with 
similar conclusions regarding the level of three-dimensional nonlinearity. Peak w, 
and wy grow more rapidly after t z 8 in ROLLUP than in LOROLL, with w, reaching 70 
times its initial value. This rapid growth is due to the collapse of the rib vortices (see 
554.3.2 and 4.5). The departure of the spanwise vorticity extrema from the two- 
dimensional evolution (w,,,, is identically zero in the two-dimensional flows) is 
associated with the evolution of the three-dimensional structures described in 54.3. 
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FIGURE 12. The LOROLL simulation at t = 9.8 (7, = 10.1). Contours of (a) w : ~  in the BP, ( b )  o, in the 
RP, (c) w, in the MP, and (d) o, in the CP. Contour increment is +0.4r:/Tr = kO.08. Note that the 
time shown and the contour level used permit direct comparison with figures 6(a ) ,  6 ( b ) ,  and 7. Solid 
contours indicate positive vorticity, dotted contours indicate negative vorticity, and tic marks are 
at 60, intervals. 

4.2. Structure of the LOROLL JEow 

Vorticity contours of the LOROLL flow at t = 9.8 (just prior to 7,) are shown in figure 
12. The contour levels were chosen to allow a direct comparison with figures 6 (a), 6 (b), 
and 7. As expected from the results described in $4.1, the LOROLL flow resembles the 
corresponding linearly evolving perturbation. Note that the contours in figure 12 (a) 
do not have the symmetry given by (17), although they are almost symmetric 
because of the weak three-dimensionality. A comparison between figure 7 and figure 
12 indicates that one of the first nonlinear effects is a tilting of the rib streamwise 
vorticity and, to a lesser extent, the tilting of the opposite-signed core vorticity 
(figure 1 2 4 .  In the braid region this tilting is simply c result of the motion induced 
by neighbouring ribs. 

As expected from the spanwise vorticity perturbation contours shown in $ 3.1, the 
roller core becomes kinked (figure 13a). When the mean spanwise vorticity is added 
to the perturbation shown in figure 12 (a) ,  the contours shown in figure 13 (b) result. 
The total spanwise vorticity is concentrated alternately on the lower (figure 13 b) and 
upper (by symmetry (12)) sides of the roller as one moves along the span of the flow 
(consistent with the three-dimensional picture in figure 13a). This concentration 
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FIGURE 13. Roller w, of the LOROLL flow at t = 9.8 (7, = 10.1). (a) Surface representing w, = - 1.8, 
domain periodically extended in z for clarity (15, = 24) .  (b) Contours of w, in the BP, contour 
increment is -0.2. Dotted contours indicate negative vorticity and tic marks are at intervals. 

becomes more pronounced as the three-dimensionality of the flow increases (see 
54.3). 

4.3. Structure of the ROLLUP flow 
The initial level of three-dimensionality in ROLLUP (five times that in LOROLL) results 
in significant three-dimensional nonlinearity and departure from the linear theory 
predictions of $3.1. Resulting rib circulations are comparable to estimates from 
several experiments (e.g. Jimenez 1983; Bell & Mehta 1990) and, when pairing is 
allowed (see Moser & Rogers 1992b), ribs of this strength lead to  the onset of 
transition to turbulence between the first and second pairings, in agreement with the 
experiments of Huang & Ho (1990). The flow cross-sections discussed below are also 
similar to  those observed experimentally (e.g. Lasheras, Cho & Maxworthy 1986 and 
Lasheras & Choi 1988). Thus ROLLUP is the flow most representative of experimental 
mixing layers. It is described below to fill in gaps in the current understanding of the 
evolution of the three-dimensional structures, and to provide a basis for the 
discussion of three-dimensional pairings in Moser & Rogers (1992b). 

A three-dimensional depiction of the vorticity field of ROLLUP at  t = 12.8, a time 
at which the flow is highly three-dimensional, is shown in figure 14. (This is about the 
time that A,, exceeds both A,, ( t  = 12.7) and the two-dimensional amplitude 
A,, ( t  = 12.8).) The hatched cup-shaped surfaces ('cups') contain spanwise vorticity 
with more than twice the maximum in the initial mean error-function profile (the 
peak is -7.3 a t  this time, see figure l la) .  Vortex lines traced through the cup 
vorticity (figure 14b) indicate that the roller is corrugated and the upper cup is 
slightly downstream (positive x-direction) of the lower cup. This is the nonlinear 
manifestation of the core bending discussed in $53.1 and 4.2. These cups play an 
important role in the transition to turbulence (see Moser & Rogers 1991). 

The shaded surfaces shown in figure 14(a) are the rib vortices, visualized as regions 
where the component of vorticity normal to  the z-direction is large (greater than 4.0). 
Each of these regions has w, and wy of the same sign, with this sign alternating in the 
z-direction. Thus the ribs occur in counter-rotating pairs as required by symmetry 
(1 1). The peak level of ox has grown by a factor of about thirty a t  this point (figure 1 1 c) 
and wy, which was initially zero everywhere, has reached a similar level (the vortex 
lines are inclined at  about 40" to  the streamwise direction). The slight angle the ribs 
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FIQURE 14. Surfaces of constant vorticity magnitude and vortex lines in ROLLUP at t = 12.8. Cross- 
hatched surfaces represent o, = -4.0 and in (a )  shaded surfaces show ( o ~ + o ~ ) ~  = 4.0. The ‘rib’ 
structures contain o, and wy of the same sign and this alternates in z (negative for the closest rib). 
Pu’ote that periodicity has been used to extend the domain in both the streamwise and spanwise 
directions. In  (a )  the same vortex lines go through both of the counter-rotating rib vortex pairs 
(concealed by the rib surface contour). Tic marks are a t  intervals. 

make with the (x, y)-plane indicates that they have a small w, component. Vortex 
lines begun in the mid-braid plane at  or near the centre of the ribs (the MP symmetry 
points) are superimposed on the contour plot. These vortex lines are the rib vortex 
lines since the point reflection symmetry (12) requires that the ribs be centred on the 
symmetry points. The alignment of the vortex lines with the shaded regions shows 
that the streamwise structures are truly ‘vortices’ and not simply regions where w, 
or wy is present. Such rib vortices have been observed in a variety of experimental 
mixing layers (e.g. Bernal & Roshko 1986). The vortex lines connecting the ribs are 
separate from those of the spanwise roller and simply connect each rib to its 
neighbour of opposite sign. In the connection regions, the vortex lines are diffuse 
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FIGURE 15. Contours of (u,  c) o2” and (6, d )  o, (total) in the BP of ROLLUP at (u,  6) t = T, = 9.8 and 
(c, d )  t = 13.9 (7, = 13.5). Contour increment is (a )  f0.4 (permit,ting direct comparison with figure 
6 a ) ,  (6) f0.3, (c) f 1.0, and ( d )  f0 .5 .  Solid contours indicate positive vorticity, dotted contours 
indicate negative vorticity, and tic marks are a t  60, intervals. 

(indicating weaker vorticity levels) and, because of flow symmetry, they are 
perpendicular to the (x, y)-BP as they pass through it. The rib and cup vortex lines 
in figure 14 indicate that the roller is bent in a direction opposite to the vortex lines 
connecting the rib vortices, a feature that has been nicely documented in 
experimental mixing layers by Lasheras & Choi (1988). 

4.3.1. Evolution of the roller core 

The perturbation spanwise vorticity and the total spanwise vorticity in the 
between-ribs plane (BP) of ROLLUP at  7, and just after 7, are shown in figure 15. The 
contour level used for the perturbation vorticity a t  7, permits direct comparison with 
figure 6 ( a ) .  Although the structure of the roller core a t  this time is similar to that 
predicted by linear theory, the flow away from the core is different. The symmetry 
(17) of @’ is broken and the braid w!D is weaker and farther from the centreline than 
that predicted by linear theory. By 7, the entire flow is different from that predicted 
by linear theory and for this reason no effort has been made to match the time and 
contour levels used in figure 15(c) with those in figure 6(c ) .  The perturbation 
spanwise vorticity at this time is highly asymmetric and has become cup-shaped. The 
total spanwise vorticity contours indicate that the vorticity becomes gradually more 
concentrated on one side of the roller, forming the cups shown in figure 14. By r,, 
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FIGURE 16. Contours of w, in the CP of ROLLUP at (a )  t = 7, = 9.8, ( b )  t = 13.9 (7, = 13.5), and (c) 
t = 16.2. Contour increment is k0.6, except in (a )  where it is k0.4. Solid contours indicate positive 
vorticity, dotted contours indicate negative vorticity, and tic marks are at So, intervals. 
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FIGURE 17. Time development of streamwise circulation in ROLLUP. Dashed lines are for various 
braid-region locations progressively further from the MP as the curves move away from the solid 
line. 
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there are two distinct 'wisps ' of spanwise vorticity opposite the cup (figure 15d). The 
stronger, more distant wisp (wisp l),  is the spanwise vorticity that crosses the MP at 
7,. It is also the spanwise vorticity associated with the rib vortex lines as they pass 
through the BP. The closer, weaker wisp (wisp 2) is associated with the vortex lines 
passing through the sub-ribs (see Ss3.1 and 4.3.3). It also crosses the MP, but at  a 
later time ( t  > 16). 

The cups are formed by the vortex stretching mechanism suggested by the linear 
perturbations (see §3.1), as can be seen in figure 16. The streamwise vorticity in the 
CP at 7 ,  (figure 16a) is similar to that predicted by linear theory (figure 7 b ) .  The 
major difference is that the tips of the ribs, which pass below and above the roller, 
are collapsing (see 54.3.2). Despite this difference, the quadrupole responsible for 
alternately (in z) stretching and compressing the spanwise vorticity of the roller is 
present, as in the linear perturbations. Although the streamwise vorticity levels in 
the core are weaker than in the rib tips, there is actually more streamwise circulation 
in the core than in both tips together. This is apparent in figure 17, where r, 
(measured in the left half of the z-domain shown in figure 16) in the CP is seen to 
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FIGURE 19. Contours of w, in the RP of ROLLUP a t  ( a )  t = 7, = 9.8, contour increment k0.3, and (b )  
t = 13.9 (70 = 13.5), contour increment k0.5. The heavy line in ( b )  is a vortex line through the mid- 
braid symmetry point ; the dashed portion is behind the plane shown. Shaded regions indicate 
regions of positive w, (opposite in sign to the mean vorticity), solid contours indicate positive 
vorticity, dotted contours indicate negative vorticity, and tic marks are a t  60, intervals. 
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become negative a t  t x 5 (chain-dotted curve). Because the quadrupoles of 
streamwise vorticity are not symmetric, mutual induction will cause the core 
vorticity to distort and the rib vortices to  move laterally, as has occurred in figures 
16(b) and 16(c).  As the core vorticity becomes distorted, the region of extensional 
strain responsible for the formation of the cups is also distorted, causing the cups to 
become curved or cupped in the spanwise direction (figure 18). 

In  addition to becoming thinner, stronger, and curved in the z-direction, the 
z-extent of the cups increases as they form, until, at t = 16.2 (figure 18c), they extend 
nearly to  the next BP. As a consequence, the cup vorticity begins to dominate the 
spanwise vorticity pattern in the rib plane (RP, see figure 19). At t = 7, (figure 19a), 
the core spanwise vorticity has weak concentrations a t  the top and bottom, which 
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FIGURE 20. Contours of w, in the MP of ROLLUP. ( a )  t = 7, = 9.8, contour increment f0.4, (b) 
t = 13.9 (7, = 13.5), contour increment k1.0, with four additional contours at f O . l  and f0.2 to 
show the low-level vorticity re-entering the braid region. (c) t = 16.2, contour increment f 1.0. 
Solid contours indicate positive vorticity, dotted contours indicate negative vorticity, and tic 
marks are at intervals. 

are associated with the forming cups. Later (figure 19b),  the edges of the cups are 
apparent on both sides of the core. The spanwise vorticity patterns above and below 
the roller core in figures 18 and 19 (including the positive vorticity regions) are 
associated with the rib vortices and are discussed in 34.3.2 below. 

4.3.2, Collapse of the rib vortices 
One of the obvious differences between the ribs of ROLLUP (figure 14) and those of 

the linear perturbation is that the ribs in ROLLUP appear to be cylindrical, rather 
than flat as suggested by figures 6 and 7. This is also apparent in figure 20, where the 
contour levels in figure 20(a)  have been chosen to allow direct comparison to the 
linear perturbation in figure 7 ( a ) .  This evolution of the rib vortices occurs (as 
explained by Lin & Corcos 1984) because the mutual induction of the ribs causes the 
streamwise vorticity contours to tilt toward the vertical (as in figures 20a and 12c) .  
If they are tilted far enough (as in figure 2 0 a ) ,  the two-dimensional strain in the braid 
region collapses the vorticity into a compact region. The collapse of the rib vortices 
is apparently the first structural manifestation of three-dimensional nonlinearity. By 
7,, the streamwise vorticity has collapsed into compact vortices with a substantial 
increase in vorticity amplitudes as seen in figure 11. 

Lin & Corcos (1984) predicted this collapse of the rib vortices by considering the 
two-dimensional model problem of an array of counter-rotating vortices in an 
imposed two-dimensional strain. Their predicted structures are virtually identical to 
those shown in figure 20, including the S-shaped pattern of figure 20(a) and the 
collapse to nearly circular vortices (near the centreline) in figure 2 0 ( b ) .  (See their 
figure 4 - since w, and wy are similar, either one can be compared to their ‘rib-wise ’ 
vorticity.) Note that our cuts are not normal to the ribs, so the contours appear 
elliptical. Their two-dimensional model thus captures the essence of the three- 
dimensional evolution of the braid region prior to oversaturation. They also provide 
a quantitative prediction of the circumstances in which the collapse is expected. This 
criterion is evaluated in 54.5. 

It was also suggested by Lin & Corcos that the asymptotic state of the collapsed 
rib vortices would resemble a Burgers vortex (Burgers 1948) with an axisymmetric 
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FIQURE 21. Contours of w, in the MP of ROLLUP at (a )  t = 7, = 9.8, with T = 0.5 contour line (thick) 
superimposed, ( b )  t = 13.9 (7, = 13.5), and (c) t = 16.2. Contour increment f0.3. Shaded regions 
indicate regions of positive w, (opposite in sign to the mean vorticity), solid contours indicate 
positive vorticity, dotted contours indicate negative vorticity, and tic marks are at So, intervals. 

strain rate equal to one half that of the braid-region plane strain rate. The collapsed 
ribs at  7, do resemble Burgers vortices in that the rib-wise vorticity is nearly 
axisymmetric and has a Gaussian distribution. However, at 7,, the ribs are about 
40% wider than a Burgers vortex with the same strain-rate (see figure 1Od) because 
they have not yet reached their asymptotic (in time) size. The time constant for 
attaining the Burgers vortex state is l/S (Lundgren 1982) or about three time units. 
Thus it is not possible for this asymptotic state to be achieved between the time the 
ribs become axisymmetric (sometime after 7, = 9.8, see figure 20a) and the time the 
circulation starts growing again (7, = 13.5). 

As was demonstrated by Lin & Corcos (1984), the collapsed ribs can wrap a passive 
scalar around themselves, forming a spiral in the single passive-scalar contour shown 
in figure 21 (a). This also leads to the 'mushroom '-shaped scalar patterns observed in 
many experiments, rather than the mild scalar perturbations induced by non- 
collapsed ribs (see figure 2 in Rogers & Moser 1989 and figures 12 and 13 in Lin & 
Corcos 1984). 

In addition to the effects on the scalar, the collapsed rib vortices can wrap the 
ambient spanwise vorticity about themselves (before it is removed from the braid 
region) as described in Corcos (1988). This results in two small regions of positive 
spanwise vorticity in each rib as shown in figure 21 (a). When the spanwise vorticity 
is largely depleted from the braid region there is no ambient vorticity to wrap around 
the ribs. At  this time (figure 21b) the ribs have a positive spanwise vorticity 
component, which is associated with the ribs being tilted out of the RP. The negative 
spanwise vorticity far from the centreline at this time is the vorticity re-entering the 
MP at 7,. Later, when substantial vorticity is again present in the braid region (figure 
21c), the ambient vorticity is again wrapped up by the ribs, forming the layered 
pattern of spanwise vorticity around the ribs, as predicted by Corcos (1988). Note 
that the ribs collapse over their entire length, and in particular where they pass over 
and under the roller (see figure 16). This apparently leads to the wrapping of ambient 
spanwise vorticity near the roller, as suggested by the positive vorticity patterns in 
figure 18. However, contrary to the expectations of Corcos (1988), the roller vorticity 
does not appear to be involved because the ribs pass above and below its major 
vorticity concentrations. 
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Only collapsed vortices wrap the scalar contours into a spiral. Thus, a collapse time 
(7c, see table 1 )  can be defined as the time a t  which the scalar contour at the centre 
of the ribs has been rotated 180" from its original ( t  = 0 )  horizontal orientation. This 
is the time when aT/& at the mid-braid symmetry points first changes sign. The 
PBclet number (Pe, = 500) is sufficiently high for this to be a good approximation of 
the time at which material elements or vortex filaments at  the symmetry points 
would be turned by 180". Positive spanwise vorticity first appears ( t  = 7.8) when the 
rotation reaches 90°, somewhat before 7 ,  = 8.8. 

With the collapse of the ribs and the depletion of spanwise vorticity from the braid 
region, the rib vortex lines extend all the way through the ribs and connect to the 
neighbouring rib above (or below) the roller core as shown in figure 14 (passing 
through the wisp of w, in figure 15d). This is not the case in LOROLL, where the vortex 
lines are not aligned with the surfaces of constant vorticity. In LOROLL the vortex 
lines have a streamwise extent of only about $ of the rib vorticity surface contour. 
As noted above, by r, the rib vortices become inclined to the rib plane. This forms 
the positive w, present both in figure 21 ( b )  and in the braid region of figure 19(b). The 
rib vortex lines pass back and forth through the rib plane as shown in figure 19(b) ,  
where the vortex line through the mid-braid symmetry point is shown. At  each 
crossing of the rib vortex line, there is a region of positive or negative w,. All of the 
spanwise vorticity external to the roller core in this figure, including the regions of 
positive w,, is associated with the crossing of rib vortex lines. There are several 
reasons for this distortion of the rib vortex lines, including the winding of vorticity 
discussed above, the lateral movement of the ribs near the core noted in figure 16, 
and the tendency for a hairpin vortex in a shear flow to become horseshoe shaped 
(e.g. Moin, Leonard & Kim 1986). 

4.3.3. Growth of the rib circulation 

As discussed in 53.1, when the braid region is depleted of spanwise vorticity, the 
rib circulation cannot grow, resulting in the plateau in cp (r, in the MP)  shown in 
figure 17. As with the linear perturbations, rFp grows rapidly once spanwise 
vorticity re-enters the M P  at  7,. However, unlike the linear case, the vorticity that 
enters the braid region is the wisp of w, (in the BP) containing the rib vortex lines 
connecting one rib to its neighbour. By regarding the rib as a collection of vortex 
lines, it is clear that its circulation can only increase if other vortex lines are brought 
into the rib bundle. Because of the symmetry (1 l ) ,  each rib vortex line is connected 
to a neighbouring rib; that is, the rib bundle consists of many hairpin-like vortex 
filaments. To increase the MP rib circulation, additional hairpin filaments must be 
brought through the M P  to combine with the existing rib. The wisp spanwise 
vorticity associated with the tip of the hairpin filaments (located in the BP between 
the two ribs) must cross the M P  before this can happen. Note that it is exactly this 
spanwise vorticity that appears in equation (16) for X J a t .  Without new BP 
spanwise vorticity (hairpin filament heads) crossing the MP, the circulation rEp 
cannot increase. Just prior to 7, virtually all the vorticity present in the braid region 
is already in a collapsed rib vortex and no new filaments are available to increase the 
circulation. But, as the wisp crosses the MP, rib vortex lines from the neighbouring 
braid region (upstream or downstream periodic images in this case) are present in 
addition to the original rib lines, thus increasing the circulation. 

Note that, as with linear perturbations, r, measured at different locations in the 
braid region begins to grow at different times (figure 17). However, by t x 16, the 
circulation curves come together again, with I', = 3.8, approximately three times the 
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FIGURE 22. Contours of w, in the RP of ROLLUP at (a) t = T,  = 9.8 and ( 6 )  t = 13.9 (7,, = 13.5). 
Contour increment is (a) k0.4 (permitting direct comparison with figure 66) and ( 6 )  f 1.0. Solid 
contours indicate positive vorticity, dotted contours indicate negative vorticity, and tic marks are 
at intervals. 

plateau value of 1.3. This brief re-emergence of a rib with uniform (in x) circulation 
does not occur in the linear perturbation (see figure 5 ) .  At this time, wisps from both 
the upstream and downstream roller have completely crossed the MP, bringing with 
them the rib vortex lines from the upstream and downstream braid region, resulting 
in the factor of three increase in rFp. Further increases in rFp are associated with the 
re-entry of the sub-rib vortex lines as wisp 2 enters the MP. By t = 20, the circulation 
rFp reaches 7.4, which is half of the roller circulation r, = AUA, = 14.6. Thus a 
significant fraction of core vorticity has been pulled through the braid region.? 

Because the ribs in ROLLUP are collapsed, the new streamwise vorticity in the braid 
region after 7, is wound into them as the two-dimensional strain brings the vorticity 
together (see figure 206, c).  This is different from the linear case in which the strain 
brings the w, together so that it can diffuse into a single vortex. Thus at late time, 
the rib vortices remain collapsed, while new streamwise vorticity is continually fed 
into them, forming the lobed pattern in figure 20(c). 

Contours of streamwise vorticity in the rib plane (RP) of ROLLUP a t  7, and just 
after 7, are shown in figure 22. Although the ribs have already collapsed by 7, 

(indicating substantial nonlinearity), the streamwise vorticity in the core (figure 22a) 
is almost identical to that of the linear perturbation shown in figure 6(6). The 
collapse of the ribs, which makes the vertical extent of the rib vorticity larger, is the 
major difference between figures 22(a) and 6(b ) .  The sub-rib contours (marked A in 
figure 22a) are also nearly identical to those predicted by linear theory. As in the 
linear case, the sub-ribs become larger and extend farther into the braid region as 
time progresses (see figure 226). The sub-rib vortex lines are kinked with the same 
sense as those of the main rib but are not symmetric around their mid-points as are 
the rib vortex lines in this flow. 

The sub-ribs are also apparent in the core-plane (CP) in figure 16. I n  figure 16(6, c ) ,  
the sub-rib vorticity is being wound into the main rib vortices near the roller. This 
is a mechanism by which the circulation of the ribs near the roller is increased. The 
formation and inclusion of the sub-ribs is the cause of the increase in the CP 

t Note that of this 7.4, 3.5 is associated with core vorticity since 3(1.3) is associated with rib 
structures. Thus the fraction of core vorticity pulled through the MP is 3.5/(14.6- 1.3) = 0.26. 
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FIQURE 23. The HIROLL simulation at t = 7, = 7.5. Contours of (a) w, in the BP, contour increment 
-0.7, and ( b )  w, in the RP, contour increment k0.6. (c) Surface representing w, = -4.0. Solid 
contours indicate positive vorticity, dotted contours indicate negative vorticity, and tic marks are 
at So, intervals. 

circulation (figure 17) after 7,. This ‘ recollapse ’ of sub-rib streamwise vorticity into 
the main rib is qualitatively similar to the recollapse of neighbouring rib streamwise 
vorticity into the main rib shown in figure 20. 

4.4. Structure of the HIROLLJ~OW 

As expected from the discussion in $4.1, the HIROLL flow bears no resemblance to the 
corresponding linearly evolving flow. Because of this, contour plots in figures 23 and 
24 are shown at t = 7.5 = 7, rather than at t = 9.8 as in LOROLL ($4.2) and ROLLUP 

($4.3). For the same reason, the contour levels chosen do not correspond to those 
used in $3.1. The ‘typical’ flow structures are still visible in these figures, although 
the flow is more three-dimensional than the ROLLUP flow. By 7, there is a pronounced 
cup of spanwise vorticity, a largely irrotational core region, and a wisp of spanwise 
vorticity opposite the cup in the BP (figure 23a). In RIROLL the cup is almost vertical 
(instead of horizontal as in ROLLUP), resulting in a corrugated roller (figure 23c) bent 
primarily in the streamwise instead of cross-stream direction. (Note that there are 
additional concentrations of spanwise vorticity between the cups.) In the RP, the 
usual pattern of core w, opposite in sign to the rib vorticity is present (figure 23b). 
The sub-rib has w, of both signs, which is more complicated than in ROLLUP. 
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FIQURE 24. Contours of (a, b, c )  w,  in the M P  with the T = 0.5 contour line (thick) superimposed and 
(d,e,f)w,ofHIRoLL(a,d)t=rr=7.5,(b,e)t= 11.6,and(c,f)t= lP.l.Contourincrement(a) k0.4, 
( b )  40.2, (c) f0.3, (d )  k0.4, ( e )  f0.7, and (f) f0.5. Shaded regions indicate regions of positive w,, 
solid contours indicate positive vorticity, dotted contours indicate negative vorticity, and tic 
marks are a t  intervals. 

As can be seen in figure 23(b) and figure 24, the ribs in HIROLL are nearly as large 
as the core a t  7,. They are also collapsed, although the opposite-signed w, around the 
outer edge of the ribs indicates more complexity than in ROLLUP. As in figure 21 (a) ,  
the passive-scalar T = 0.5 contour level is superimposed upon the w, contours. Prior 
to r,, there is a good correlation between the regions of positive w, and regions where 
the initially horizontal scalar contour line has been ' turned over ', suggesting that 
vorticity is being wound around the vortex as described in Corcos (1988). As shown 
in figure 24(b), many windings of the scalar interface occur before the molecular 
diffusivity of the passive scalar acts to mix the rib material (figure 24c). The w, 
pattern at this time (figure 24 f )  is also undergoing a change, acquiring a central core 
region of opposite sign. At later times this continues and by t = 15 the rib streamwise 
vorticity is concentrated in a thin hoop-shaped region. The ribs also contain many 
regions of spanwise vorticity of both signs at this point. Thus, the HIROLL ribs are 
large enough to have internal vortex dynamics, resulting in a flow that is more 
complex than ROLLUP. 

The mid-braid circulation (figure 9 b )  saturates a t  a plateau level that is lower than 
that predicted by linear theory. Also, the HIROLL simulation does not experience the 
same dramatic increase in rgp when vorticity re-enters the mid-braid plane. Instead, 
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FIGURE 25. Contours of all vorticity components of HIROLL a t  t = 14.9 in (a)  the BP (w,  and wy are 
zero in this plane) and ( b ,  c, d )  the RP. The contour increment is 1.0. (u,  b )  w,, (c) w,, ( d )  wy. Solid 
contours indicate positive vorticity, dotted contours indicate negative vorticity, and tic marks are 
at So, intervals. Regions of positive w, are shaded. 

I'Fp oscillates and by t = 20 is actually less than the plateau level. (Note that this 
plateau level is about 4 and already almost 30% of rz.) The simple picture of 
nonlinear oversaturation presented in $4.3 is no longer valid when the flow structure 
is as complicated as that of HIROLL (see figure 25). 

The vorticity distributions in both the BP and the R P  at t = 14.9 > 7, are shown 
in figure 25. In the BP (figure 25a) the vorticity (by symmetry only w, is non-zero) 
is confined to thin sheets (there is little spanwise variation over several of their 
thicknesses) and roughly circular 'rollups ' of these sheets. Note also the presence of 
positive wz, which, due to symmetry (1  l ) ,  can only appear in the BP through viscous 
diffusion. The contours of vorticity in the RP are complicated, with several regions 
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of both signs of all components present. At this spanwise location the layer appears 
‘turbulent ’, although the symmetries are preserved. In Moser & Rogers (1992 b )  it is 
shown that flow features like those in figure 25 are indeed associated with the 
transition to turbulence. 

Some of the ‘atypical’ behaviour of the HIROLL evolution discussed in $4.1 can be 
understood in terms of the structures just discussed. The rapid increase of 8, in the 
HIROLL flow (figure lob) is primarily the result of the layer being pushed far from the 
centreline by the stronger ribs (note the BP w, shown in figure 23a is almost entirely 
above the centreline). The wide extent of vorticity in the braid region also 
contributes to the larger thickness. Both -wb and S (figure lOc, d )  become erratic 
because of the complicated (turbulent) vorticity brought into the braid region after 
7,. Also, from the definition given in $3.1 (time a t  minimum -wb),  7, = 12.1 for 
HIROLL. However, in this case, the internal rib vortex dynamics are responsible for 
the increase in -wb a t  t = 12.1, not the re-entry of spanwise vorticity into the braid 
region far from the centreline. The re-entry time is about 14.5 in HIROLL, in better 
agreement with 7, from LOROLL and ROLLUP. 

4.5. The Lin & Corcos rib collapse criterion 

As discussed in $4.3.2, the Lin & Corcos (1984) model of the rib vortices (streamwise 
vortices in a two-dimensional plane strain) predicts the character of the collapsed 
and uncollapsed ribs. From their model problem, two important parameters 
governing the collapse of such vortices were derived. These are the non-dimensional 
circulation strength, 

(S being the mid-braid principal strain rate) and the aspect ratio, 

f- = f,,,/(SA:) (19) 

A ,  = h,/(48,), (20) 

(6, = [RV/(~S)]~,  a strain-diffusion equilibrium lengthscale). For f $  1 and A ,  % 1 
they expect ‘substantial collapse’ for f A R  > 0.43. For more typical values o f f  and 
A ,  this simple criterion must be generalized. Their curve (shown in their figure 9) for 
substantial collapse is well described by 

&365 = 145 . .  (21) 

By substituting the definitions given above, the collapse criterion is that 

> 13.1, (22) 
r r i ,  

= fi0.3175h0.6350 y0.6825 

where 9 is the collapse parameter. Thus, increasing the rib circulation and the 
Reynolds number improves the chance of collapse whereas increasing the strain rate 
and the spanwise wavelength reduces the chance of collapse. Of these effects, the 
circulation is of primary importance and the strain rate is of least importance. I n  the 
two-dimensional Lin & Corcos model problem, all of the quantities entering the 
definition of 9 are constant during their flow evolution. In the three-dimensional 
mixing layer, rrib and S vary as the flow evolves (see $4.1). 

The time evolution of 9 for each of the STI disturbance simulations listed in 
table 1 is shown in figure 26 (similar curves for the oblique cases and several other STI 
cases are given in Rogers & Moser 1991). Here the streamwise circulation cp is used 
as an approximation to rrib. Note that the three most important parameters have 
each been varied compared to the ROLLUP case (rrib varied in LOROLL and HIROLL, A, 
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FIGURE 26. Time development of the Lin & Corcos (1984) collapse parameter, 9. The 

horizontal line at  2’ = 13.1 represents the Lin & Corcos collapse criterion. 

varied in WIDEROLL, and v varied in LOWRE). By examining the M P  vorticity and 
passive-scalar contour patterns, it was determined that the cases that exhibit clear 
collapse have 3’ > 13.1 well before the rollup is completed (see also 7, given in 
table 1) .  The LOWRE and LOROLL simulations, in which the ribs do not collapse, do not 
have 9’ > 13.1 until t > 7,. Intermediate cases (see Rogers & Moser 1991) exhibit 
partial collapse. For the WIDEROLL simulation shown in figure 26, partial collapse 
does not occur until well after 7,. Lie & Corcos found that the time required to 
achieve collapse increases rapidly as r decreases. Thus, the larger A, in WIDEROLL 

results in a smaller r and a larger time until collapse, in agreement with the current 
results. In general, examination of figure 26 (and figure 27 in Rogers & Moser 1991) 
indicates that the Lin & Corcos criterion is accurate in determining whether or not 
the ribs collapse and indicates that their two-dimensional model problem does indeed 
capture the essence of the mid-braid flow evolution. 

The collapse parameter 9 is also a good measure of the three-dimensionality of the 
flow. In  particular, the non-dimensionalization given by (22) for the prediction of 
collapse of rib vorticity is also a good indicator of the level of positive spanwise 
vorticity, the strength of cup vorticity, layer thickness, and other measures of three- 
dimensionality. Because of this, 9 has been suggested by Moser & Rogers (1991) as 
the basis for a criterion predicting the transition to turbulence. 

5. Oblique initial disturbances 
In this section, the flow evolution resulting from disturbances in the (1, f 1 )  modes 

(instead of the (0, + 1 )  modes) is summarized. This is the initial condition used by 
Corcos & Lin (1984) and Metcalfe et al. (1987). For the cases considered here, the ( 1 , l )  
and (1,  - 1)  modes are initialized with the same ox profile. Discussion of simulations 
begun from single oblique modes can be found in Rogers & Moser (1991), along with 
a more detailed examination of the flows presented here. 

The streamwise vorticity of the three-dimensional disturbance is given by 

ox = -A!l Re (f(y) e‘(Lz2-#11)) sin ( k , z ) .  (23) 

The complex f(y) (real part symmetric in y and positive a t  y = 0, normalized to an 
integrated energy of 1)  is determined from the Orr-Sommerfeld equation since, 
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unlike the STI disturbances, oblique modes have meaningful eigenfunctions. t The 
coefficient A,, is adjusted such that the peak value of r,O is the same as that in ROLLUP 

(I‘,O/rz = 0.025), and the w, component of the disturbance is set to make the vorticity 
solenoidal. Flows resulting from three values of the phase have been simulated. 
The ‘in phase’ OBLIN flow = 0) has the same two symmetries as ROLLUP 

(equations (1  1 )  and (12)), with the same symmetry planes and symmetry points. The 
initial condition has peak streamwise vorticity at the point-reflection symmetry 
points, but with opposite signs in the M P  and CP. In contrast, the ‘out-of-phase’ 
OBLOUT case ($,, = in), also has the same symmetries, but with the point-reflection 
symmetry points located in the symmetry planes a t  z = 0 and ;Az. In  this case, w, in 
the initial condition is maximum a t  points halfway between the M P  and CP (x = 2Az 
and ;A,), and is zero in the M P  and CP. I n  addition, the symmetries require that r, 
is zero for all time in the M P  and CP. This phasing corresponds to a ‘bulging’ mode, 
found to exhibit no appreciable linear instability by Pierrehumbert & Widnall 
(1982). The OBLMID flow ($,, = in) is intermediate between the two extremes, and 
has only the plane-reflection symmetry. 

5.1. The ‘ in-phase ’ case 
Given that OBLIN and ROLLUP exhibit the same symmetries, it  is perhaps not 
surprising that they have similar evolutions. This is especially true since the OBLIN 

initial conditions have opposite-signed w, in the braid and core; a situation that 
dpvelops rapidly in ROLLUP. Unlike in ROLLUP, the initial circulation r, varies with 
x. However, by 7, it is independent of x for most of the extent of the collapsed ribs, 
as in ROLLUP. The major difference between OBLIN and ROLLUP is that before T,, the 
ribs in OBLIN are more oblique to the streamwise direction (see figure 34 of Rogers &, 
Moser 1991 or figure 6 of Rogers & Moser 1989). These oblique ribs are similar to  
those observed experimentally by Lasheras et al. (1986) (see their figures 10 and 14c). 
By T,, however, the ribs are less oblique and acquire an S-shape as in ROLLUP. 

5.2. The ‘out-of-phase’ case 
The symmetries in OBLOUT, which require that rFp = 0 for all time, preclude it from 
achieving the ‘typical ’ flow state of ROLLUP and OBLIN. As expected, the evolution 
of this case is markedly different from that of the simulations described above. 

Because of the symmetries, the ‘ribs’ that form in the braid region are double ribs, 
with w, and wy of one sign above w, and wy of the opposite sign. The self-induced 
motion of these dipoles causes them to propagate towards a neighbouring dipole of 
opposite sign. A quadrupole centred on the BP point-reflection symmetry point 
results. This quadrupole is held together by the two-dimensional strain in the braid 
region until viscosity annihilates the vortices, resulting in a flow that has three- 
dimensional core vorticity and no ‘ribs ’. The three-dimensionality is thus weaker 
than in ROLLUP, with A,D dominated by A,, (and As,) until well past 7,. The 
evolution of A,, in the OBLOUT flow is virtually identical to that of ROLLUP until past 
T,, despite the markedly different character of the three-dimensionality. The lack of 
ribs results in a thinner mixing layer with the evolution of 6, being similar to that 
of the corresponding two-dimensional flow (see $5.3). 

I n  the early development of OBLOUT (before the ribs are annihilated), the 
streamwise vorticity upstream of the roller is opposite in sign to that downstream of 

t The full eigenfunction also contains an wy component. Simulations of the type described here 
but with nonzero oy in the initial conditions are described in Rogers & Moser (1991) and lead to  
qualitatively similar flows. 
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FIQURE 27. Spanwise vorticity in the OBLOUT simulation at (a, c) t = 8.9 (7, = 9.9) and ( b ,  d )  t = 14.0 
(7, = 13.7). (a, b , d )  Contours in the BP with contour increments of (a) -0.5 and (b ,d )  -2.0 and (c) 
surface representing w, = -2.5. (d )  is an enlargement of the area marked by a rectangle (central 
one-sixth of streamwise domain) in (c). Tic marks are at 60, intervals, except for (d )  where they are 
at intervals of 0.5c (3.0c Q x Q 4.5e and -0.560, Q y Q 0.5c). 

the roller. As in the typical evolution, core w, of sign opposite that of the nearby rib 
vorticity forms, producing regions of positive and negative w, above each other in the 
core (see figure 40 of Rogers & Moser 1991). Also similar to the typical evolution, 
spanwise stretching amplifies the core w,, except in this case stretching regions are a t  
the same z-location rather than alternating between the top and bottom of the layer 
in z. Thus, instead of forming cups of intense w,, 'hoops' of intense vorticity are 
formed (figure 27). The details of the hoop formation are described in Rogers & Moser 
(1991). Hoop formation is expected whenever ribs of different signs are on either side 
of a roller. This can also occur when streamwise subharmonic disturbances are 
included (see Moser & Rogers 1 9 9 2 ~ ) .  

The hoop structure that forms in OBLOUT is shown just prior to 7, in figures 27 (a)  
and 27 ( c ) .  As can be seen in figure 27 (a), the interior of the hoop contains virtually 
irrotational fluid (w, and wy are identically zero in the BP's by symmetry). As noted 
above, hoops form in every other BP, with the BP between hoops containing strong 
spanwise vorticity that is fairly uniform in the span (figure 27c). Unlike the cup 
structures in the standard evolution, the hoop structure shown in figure 27 (a)  does 
not survive up to and beyond 7,. By 7, it collapses into a vortex sheet (figure 27b) 
with wZmin reaching -24.9, over ten times its initial level. At  the same time, a new 
hoop forms in the BP between the two hoops shown in figure 27 (c). Still later in the 
flow evolution, this newly formed hoop collapses and new hoops reform again at the 

8 FLM 243 
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FIGURE 28. Time development of (a) streamwise circulation, cp, and 
( b )  momentum thickness, 8,. 

original hoop locations. This roughly periodic oscillation of core vorticity has a 
period of At z 8. The strength of the vortex stretching that produces the collapse of 
the hoops is indicated by the rapidity of the change in vorticity levels a t  the centre 
of the original hoops; from nearly irrotational (uzmin = -0.2) a t  t = 8.9, to 
wZmin = -24.9 at t = 14.0, to nearly irrotational again at t = 17.5. 

At t = 14.0, i t  appears that the vortex sheet created by the collapse of the hoop 
(figure 27 b )  is undergoing a secondary, smaller-scale rollup (figure 27 d ) .  Examination 
of this vortex sheet indicates that i t  is locally two-dimensional, extending over 
approximately half the spanwise domain. I ts  vorticity thickness is about one-sixth 
that of the initial error-function profile. The expected horizontal scale for the rollup 
of this vortex sheet is thus one-sixth of the streamwise computational domain extent, 
in agreement with the scale of the rollup in figures 27 ( b )  and 27 ( d ) .  The rectangle in 
these figures has a streamwise extent of ;Az and is centred on the small-scale rollup. 
In  the enlarged view, i t  can be seen that the roller proportions are similar to those 
observed in the early evolution of a two-dimensional rollup. Because this layer is 
much thinner than the original one and yet is subjected to nearly the full velocity 
difference across the original layer, its timescale for rollup is shorter (1-2 time units). 
Similar small-scale rollups have been observed in other highly three-dimensional 
flows (for a mixing layer, Moser & Rogers 1992b and for a channel flow, J. Kim, 
personal communication). 

5.3 .  Intermediate phasing 
The OBLMID simulation evolved from an initial condition halfway between that of 
OBLIN and OBLOUT. Its  development is by far more similar to OBLIN than to OBLOUT. 

Well-defined ribs evolve and the circulation evolution (figure 28 a )  parallels OBLIN, 

but at a lower level since the initial M P  level is reduced for this phasing. The layer 
thickness (figure 28b) is intermediate between OBLIN and OBLOUT but is closer to that 
of OBLIN and shows the post-7, layer thickening of the typical evolution. The mid- 
braid spanwise vorticity, mid-braid strain rate, and the vorticity extrema are all 
closer to those of OBLIN as well. Thus typical characteristics dominate over those of 
OBLOUT (see also Rogers & Moser 1991). This may be analogous to  the two- 
dimensional subharmonic resonance phenomena (Riley & Metcalfe 1980 ; Monkewitz 
1988), where pairings are delayed for a narrow range of relative phasings of the two- 
dimensional subharmonic. 

The intermediate phasing does not exhibit the point-reflection symmetry (12) and 
therefore the ribs that evolve are not fixed at z = +Lz and z = $Lz in the MP. The ribs 
are no longer equally spaced and therefore have a net self-induced motion that moves 
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them below the domain centreline in the MP. Despite the lack of the point-reflection 
symmetry, the layer structure is qualitatively similar to that of the ROLLUP flow 
shown in figure 14 (see figure 47 in Rogers & Moser 1991). 

5.4. Combinations of streamwise and oblique initial disturbances 
Three simulations were run with initial disturbances in both the oblique (1, & 1) 
modes and the streamwise (0 , l )  mode. These cases combined oblique disturbances of 
the kind given by equation (23) (for both q511 = 0 and q511 = in) with streamwise 
invariant disturbances of roughly equal energy. All three cases, including one where 
rFp is initially zero, evolve ‘typically ’. 

Combining oblique disturbances with q511 = in (the relative phasing used in 
OBLOUT) with STI disturbances results in a flow with no point-reflection symmetry. 
In such cases, as in the OBLMID flow described in $5.3, the ribs are not constrained 
to remain at  the quarter-domain locations in the MP.? Presumably, increasing the 
initial oblique energy relative to the streamwise invariant energy (i.e. approaching 
OBLOUT) would make the rib spacing less uniform until, as in OBLOUT, healthy ribs 
could no longer be sustained. 

6. Summary and discussion 
The results of the previous three sections provide a detailed description of the 

onset of three-dimensionality in a mixing layer before (or in the absence of) pairing. 
Various simulations, including many not reported here (see Rogers & Moser 1991), 
were performed to investigate the sensitivity of these results to variations in initial 
conditions. These variations included changes in amplitude, wavelength, functional 
form, and relative phasing of the initial low-wavenumber disturbances. In addition, 
simulations with initial mean velocity profiles that model a splitter-plate wake were 
made. With few exceptions, flows initialized with low-wavenumber disturbances 
exhibited only minor differences from the standard flow evolution described in $4. 
Notable exceptions are the out-of-phase oblique modes discussed in $5.2 and oblique 
modes in the absence of two-dimensional disturbances (Collis et al. 1991). As 
discussed in Collis et al., this latter case results in structures similar to those observed 
experimentally by Nygaard & Glezer (1990). When possible, the time-developing 
mixing layer results examined here have been compared to spatially developing 
simulations (Buell et al. 1992) and no major differences were found. As a consequence 
of these observations, we are confident that the simulations presented in this paper 
are representative of most experimental mixing layers that develop from laminar 
boundary layers. 

By repeating and extending the linear analyses of Pierrehumbert & Widnall(l982) 
and Corcos & Lin (1984), several new insights into the translative instability 
responsible for the onset of three-dimensionality were gained (see $3). It was found 
that Pierrehumbert & Widnall’s translative instability eigenfunctions include rib 
vortices in the braid region and oppositely signed streamwise vorticity in the roller 
core. Since the rib vortices grow with the roller perturbations, the translative 
instability should be viewed as an instability of the two-dimensional mixing layer as 
a whole. Long-term growth of three-dimensionality requires long-term presence of 
spanwise vorticity in the braid region. In a developing layer, this occurs only at late 
time, after oversaturation of the two-dimensional rollers. The translative instability 

t The simulations with a mean splitter-plate wake component in the mean velocity profile 
described in $4.3.7 of Rogers & Moser (1991) also do not have the symmetry (12). 
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is thus an instability of the late-time oversaturated flow. Oversaturation can be 
prevented when the mixing layer is pairing ; however, the translative instability is 
relevant when pairing is suppressed or delayed. I n  addition, three-dimensional 
perturbation growth similar to that of the translative instability can occur whenever 
spanwise vorticity is present in the braid region. For example, such growth is 
produced when spanwise vorticity re-enters the braid region temporarily after each 
pairing (Moser & Rogers 1992b). Also, if the completion of the rollup (and the 
associated removal of vorticity from the braid region) is delayed, the level of three- 
dimensionality is increased (see Rogers & Moser 1991). 

When the initial rib circulation is sufficiently high (a few percent of spanwise roller 
circulation) significant nonlinear effects develop. The first of these is the collapse of 
the rib vortices described by Lin & Corcos (1984). Collapsed ribs produce the 
mushroom-shaped patterns and streamwise streaks observed in experimental flow 
visualizations. Lin & Corcos also suggest a criterion for the circulation required to 
make the ribs collapse. This criterion, developed from a two-dimensional model 
problem, was found to accurately predict the occurrence of collapse in the fully three- 
dimensional flows examined here. Another manifestation of nonlinear three- 
dimensionality is the concentration of spanwise vorticity into thin cup-shaped 
regions as described in $4.3.1. In these cups, the spanwise vorticity extremum is 
many times its initial value. The cups form due to the alternate stretching and 
compression of the spanwise vorticity by the rib vortices and the streamwise 
vorticity in the bent roller. A third manifestation of nonlinearity is the formation of 
spanwise vorticity opposite in sign to the mean spanwise vorticity. This can result 
from the turning of background spanwise vorticity by the ribs ($4.3.2, Corcos 1988) 
or from spanwise inclination of the rib vortices. 

These nonlinear effects suggest three useful measures of the degree of three- 
dimensional nonlinearity : the Lin & Corcos collapse parameter, the strongest 
spanwise vorticity with the same sign as the mean, and the maximum spanwise 
vorticity with sign opposite that of the mean. Of these, the collapse parameter may 
be particularly useful since it is based on the rib circulation, which can be well 
predicted using linear analysis (with respect to  an evolving two-dimensional base 
flow), a t  least until oversaturation. 

When the rib vortices collapse, the associated vortex lines extend along the length 
of the ribs and span the entire braid region. They connect neighbouring ribs above 
(or below) the roller, on the opposite side from the cup. It is the spanwise vorticity 
associated with these connecting vortex lines that first enters the braid region at  
oversaturation. Thus the initial growth of rib circulation at oversaturation is due to 
the rib vortices being pulled over (or under) the roller into the next braid region. This 
is contrary to the speculations by several authors (e.g. Bernal & Roshko 1986 and 
Lasheras & Choi 1988) regarding the evolution of the rib vortex lines. 

Highly three-dimensional initial conditions (initial rib circulation 10 YO of that of 
the roller) result in much more complicated flows than the typical evolution 
described above. The ribs are big, and strong enough to exhibit their own internal 
dynamics. The well-defined cup structures become concentrated and lose their 
coherence. As a result, the flow appears turbulent by the time vorticity re-enters the 
braid region. 

Qualitatively different flows develop from out-of-phase oblique mode disturbances 
(see $5.2). Such flows are characterized by hoops of spanwise vorticity (rather than 
cups) and no rib vortices. While the particular initial conditions leading to hoops 
may be unlikely to occur in experimental situations, similar flow features can develop 



Three-dimensional evolution of a plane mixing layer 223 

when other initial conditions involving subharmonics are used (Moser & Rogers 
1992 a ) .  In particular, hoops should form whenever the extensional strain responsible 
for cup formation occurs on both sides of the roller at  the same spanwise location. 

The results presented in 993 and 4.5 demonstrate the remarkable predictive power 
of two analytical (or quasi-analytical) tools for this flow : the linear perturbation 
analysis of Corcos & Lin (1984) and the nonlinear streamwise vortex collapse analysis 
of Lin & Corcos (1984). These tools cannot, however, provide a complete description 
of the three-dimensionality associated with the early evolution of a mixing layer. In 
particular, the linear analysis of Corcos & Lin (1984) cannot describe aspects of the 
flow that are essentially nonlinear (e.g. the formation of cup vorticity, the evolution 
of vortex lines, and the collapse of the rib vortices). The rib vortex collapse is 
addressed by Lin & Corcos (1984), but their analysis cannot predict the circulation 
growth observed during oversaturation, the deformation of the rib vortices observed 
here, or the interaction of the ribs with the rollers. The insights obtained from the 
numerical results presented here, supplemented by the analytical models, provide a 
comprehensive understanding of the evolution of the plane mixing layer in the 
absence of pairing. In  Moser & Rogers (1992 b)  knowledge of this early mixing-layer 
evolution is critical to understanding pairing and the transition to turbulence. 

Much of this work was begun in collaboration with visiting scientists at the 1988 
Center for Turbulence Research Summer School Program. In particular we are 
grateful for discussions with Professors C.-M. Ho, F. Hussain and J. Riley. In 
addition we have benefited from comparisons with the spatially developing mixing 
layer work of Dr J. Buell, the compressible shear layer work of Professor S. K. Lele, 
and Professor E. Broadwell’s vast experience with experimental mixing layers. 
Helpful comments provided by Dr N. Mansour on a draft of this paper are also 
appreciated. Some of the computations were performed on the NAS supercomputers 
at NASA- Ames. 
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